Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages

نویسندگان

  • Won-Sang Hwang
  • Seong-Hoon Park
  • Hyun-Seok Kim
  • Hong-Jun Kang
  • Min-Ju Kim
  • Soo-Jin Oh
  • Jae-Bong Park
  • Jaebong Kim
  • Sung Chan Kim
  • Jae-Yong Lee
چکیده

Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 microM) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-beta-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 microM of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.

Mutations in RAS2, CYR1, and SCH9 extend the chronological life span in Saccharomyces cerevisiae by activating stress-resistance transcription factors and mitochondrial superoxide dismutase (Sod2). Here we show that mutations in CYR1 and SCH9 also extend the replicative life span of individual yeast mother cells. However, the triple deletion of stress-resistance genes MSN2/MSN4 and RIM15, which...

متن کامل

Ubiquitous overexpression of the DNA repair factor dPrp19 reduces DNA damage and extends Drosophila life span

Mechanisms that ensure and maintain the stability of genetic information are fundamentally important for organismal function and can have a large impact on disease, aging, and life span. While a multi-layered cellular apparatus exists to detect and respond to DNA damage, various insults from environmental and endogenous sources continuously affect DNA integrity. Over time this can lead to the a...

متن کامل

Supportive Effects of Human Embryonic Fibroblast Cell Lines on Growth and Proliferation of EBV-Transformed Lymphoblastoid Cells

Human diploid fibroblast cells produce a spectrum of necessary growth factors and extracellular matrix (ECM) components essential for growth and proliferation of a variety of other cell types. In this study, the effect of five human embryonic fibroblast cell lines, isolated from liver, lung, skin and foreskin tissues, was investigated. A coculture system analyse was employed to cloning efficien...

متن کامل

O-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte

Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...

متن کامل

Consumption of antioxidant dietary agents, curcumin and vitamin C, protects cellular DNA from gamma-radiation

Background: Exposure to ionizing radiation results in genotoxicity and the unrepaired lesions in cellular DNA results in cell cycle arrest, reproductive death, interphase death, division delay, chromosome aberrations, mutations, etc. leading to the intensive destruction of cells and violation of their proliferative capacity there by adversely affecting the mammalian system. Since ionizing radia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007